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(UVOTSSC). The catalogue was compiled from 23 059Swift datasets taken within the first five

years of observations with theSwift UVOT. A purpose-built processing pipeline, based around

the standardSwift processing tools, was employed. The catalogue contains positions, photom-

etry in three UV and three optical bands, morphological information and data quality flags. In

total, the catalogue contains 6 200 016 unique sources of which more than 2 million have multiple
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1. Introduction

TheSwiftUltraviolet/Optical Telescope UVOT [1] is a 30 cm modified Ritchey-Chretien tele-
scope mounted on the instrument platform of the NASASwiftGamma-Ray Burst space observatory
[2]. It has many characteristics in common with theXMM-NewtonOptical Monitor (XMM-OM)
[3], on which its design was based. A filter wheel provides a selection of lenticular filters for imag-
ing and two grisms for low-resolution spectroscopy. A microchannel-plate intensified CCD (MIC)
[4] is used as the detector. A key characteristic of this detector is an extremely low dark current.
The UVOT is therefore usually background-limited by the zodiacal light [5]. The UVOT has a
17 arcmin× 17 arcmin field of view, so its images routinely contain many more sources than the
target of theSwift observation. The point spread function has a FWHM of around 2.5 arcsec in
the UV [6]. The combination of the large field of view, sensitivity in the UV, small PSF and low
background mean that the UVOT is a capable survey instrument.

Swift’s observing programme is diverse, from chasing gamma-ray bursts and other transients
[7], to pointed observations of all kinds of astronomical sources. During this observing programme
the UVOT has accumulated a large body of images, sampling a wide range of Galactic and extra-
galactic sky; see Fig. 1. Since early in the mission, a ‘filterof the day’ has been chosen for UVOT
exposures where there is not a strong scientific constraint on the UVOT filter. In order to maximise
the serendipitous science return from UVOT, the filter of theday is continuously cycled through
the u and UV filters.

The UVOT Serendipitous Source Catalogue (UVOTSSC) is the first catalogue of sources de-
tected by UVOT through its six lenticular filters, imaging inV, B, U, UVW1, UVM2 and UVW2
bands. It is the result of a 5 year long project led by MSSL, on behalf of the UVOT team, to produce
a uniform product in terms of astrometry, photometry and morphological information from the first
5 years of UVOT observations. It provides an easy route for astronomers to obtain UVOT-derived
source parameters without having to reduce or analyse UVOT data, and a large statistical dataset
for the systematic investigation of the UV sky.

2. Data processing and construction of the catalogue

To construct the catalogue, the UVOT data were processed through a purpose-built pipeline,
based on theSwift UVOT FTOOLS available inHEASOFT1. The pipeline is constructed as a se-
quence of processing engines, which advance the data through each intermediate stage of catalogue
construction. The UVOT processing scheme is shown in Fig.2.The data are processed bySwift
observation dataset, each of which has a unique 11-digit identifier, known as OBSID. Each OB-
SID is processed separately to an OBSID-specific source list. In the final stage of the catalogue
construction, the individual source lists are brought together.

The vast majority of UVOT observations between 2005 and 2010inclusive were used as the
input data for the catalogue. Very short exposures and exposures taken when theSwiftstar-trackers
were not locked were not used for the catalogue.

The first engine creates raw images from data that were taken in event mode, localises bad
pixels (taskUVOTBADPIX) and removes the modulo-8 pattern caused by the on-board centroiding

1http://heasarc.gsfc.nasa.gov/docs/software/ftools
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Figure 1: Swift pointings from 2005-2010, colour coded by the total UVOT exposure time in seconds

algorithm (taskUVOTMODMAP). The remainder of the first engine deals with image artefacts
(readout streaks, scattered light features, etc.), creating a map of these artefacts for use later in the
processing. The taskUVOTFLAGQUAL identifies possible image artefacts and sets quality flags in
the pixels of the quality map which accompanies the main image through the further processing
steps and which is used at the final stage of processing for passing quality flags to those sources
whose coordinates coincide with the flagged pixels in the quality map. An example of the quality
map containing a readout streak, diffraction spikes and some other image artefacts is shown in
Fig.3.

The second engine rotates the images with the purpose of aligning them along the celestial
coordinate axes (taskSWIFTXFORM). Then the second engine corrects for the possible shifts of
the image coordinates with respect to the sky coordinates byusing reference stars from the USNO-
B1 catalogue (taskUVOTSKYCORR). At the end of this processing stage, the taskUVOTEXPMAP

generates exposure maps corresponding to the sky-rotated and aspect-corrected images.

The third engine stacks, for each OBSID, the different exposures for each filter, as well as the
corresponding exposure and quality maps (taskUVOTIMSUM) and generates a large-scale sensitiv-
ity map needed for accurate photometry (taskUVOTSKYLSS).

The fourth engine calculates the background maps for each stacked image and detects sources
which have count rates that exceed a threshold above the background (taskUVOTDETECT; see
Section 3). The taskUVOTDETECT used for the catalogue processing was modified with respect
to the standard task in theHEASOFT package in order to deal with most of the problematic images
that could be found in the UVOT archive, without manual intervention on the parameters of the
task. The final stage of the processing involves the taskUVOTFLAGQUAL that extracts the image
quality flags from the quality maps produced by the first engine. These flags are introduced into the
source lists for each observation. Finally, when all the UVOT data have been processed through the
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Figure 2: Data processing engines for the UVOT source catalogue

four engines, the source lists are concatenated to form the source catalogue and cross-correlated to
identify sources which have been observed in more than one observation.

3. Source detection and measurement process

For each Swift observation dataset (identified by a unique OBSID number) and for each filter,
all images are processed and then stacked to achieve maximumsensitivity prior to source detection.
Thus within each OBSID one image per filter is searched for sources.

The source detection and measurement is carried out within amodified version of the task
UVOTDETECT, which is based aroundSEXTRACTOR [8]. Within UVOTDETECT a background map
is constructed, either using the standardSEXTRACTOR algorithm which sigma-clips the image
until convergence, or for low-count images using aUVOTDETECT-specific algorithm based around
Poisson statistics. Sources are then detected by blurring with the standardSEXTRACTORpyramidal
function before searching for groups of 8 or more connected pixels which are brighter than the
background by more than 1.5 sigma.

Source countrates and magnitudes are calculated as corrected isophotal magnitudes inSEX-
TRACTOR terminology [8]. Only detections with a signal to noise ratio > 3 are retained after the
source detection passes. Quality flags are then propagated from the quality maps to the source lists.
Within each OBSID, the source lists are then merged to form a single source list per observation,
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Figure 3: Example products of the taskUVOTFLAGQUAL: the raw image (left panel), the corresponding
quality map (middle panel), and the source map (right panel). The different colours in the quality map
correspond to different combinations of quality flags. The source map contains only the pixels corresponding
to bright source regions, the rest replaced with the averagebackground of the original image; it is useful if
aspect correction of the original image has failed.

one row per source, which contains the photometric, morphological and quality information from
all the UVOT filters used in that OBSID. From this list, any sources which do not have a signal to
noise ratio> 5 in at least one filter are removed.

4. Catalogue structure

The UVOT source catalogue is presented in the form of FITS files with two table extensions,
the first table (called SOURCES) containing the source parameters, and the second table (SUM-
MARY) containing information about the observations used for producing the source catalogue.
The catalogue has deliberately been given a similar structure to the XMM-SUSS catalogue com-
piled from XMM-OM images [9], given the similarity in the character of the data contained within
the two catalogues.

Since the images from different observations (OBSIDs) generate separate source lists that are
concatenated in the final stage of catalogue production, thesame source could be detected in several
different observations. Such sources have multiple entries in the final catalogue SOURCES table,
but each entry has the same unique source identification number, so the number of entries in the
final source list table is larger than the total number of sources in the catalogue.

The first column (IAUNAME) of the SOURCES table gives the IAU source name in the form
SWIFTUVOT JHHMMSS.S+DDMMSS, where HHMMSS.S stands for right ascension coordi-
nates, and DDMMSS for declination coordinates. The second column (N_SUMMARY) contains
a number which links the SOURCES and SUMMARY tables with eachother, that is, for each
source it gives the row in the SUMMARY table corresponding tothe observation in which the
source was detected. The third column (OBSID) contains the observation number within theSwift
archive in which the source was detected. The fourth column (NFILT) gives the number of UVOT
filters through which the source was observed. The next four columns contain the equatorial co-
ordinates and position uncertainties for the source. The next six columns (filter SRCDIST), where
filter corresponds to the UVOT filter names, give the distance to thenearest neighbouring source
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Table 1: Source quality flags within the UVOTSSC.

Bit Value Quality issue

0 1 Cosmetic defects (bad pixels) within the source region.
1 2 Source lies on or near a bright read-out streak
2 4 Source lies on or near a smoke ring
3 8 Source lies on or near a diffraction spike
4 16 Source is bright with coI-loss-induced mod-8 noise
5 32 Source lies within a ‘halo ring’ of enhanced background
6 64 Source lies close to a bright object
7 128 Source lies close to a large change in the exposure map
8 256 Point source lies over an extended source

detected in the corresponding filters. This is useful to assess whether the source parameters are
likely to have been affected by the proximity of (and confusion with) other sources. The next col-
umn (NOBSID) reports the number ofSwift observations in which the source has been detected.
The next 30 columns report the photometric properties of thesource in each of the filters through
which it has been observed: signal to noise ratios, magnitudes in the AB and Vega systems together
with the associated uncertainties, flux estimates and the corresponding uncertainties. The next 24
columns contain morphological information by filter: majorand minor axis sizes, position angles
and whether the source is considered extended. The final six columns provide quality flags, broken
down by filter.

5. Quality flags

An important part of the catalogue processing is the recording of any issues that may affect
the quality of the catalogue data so that the user can make an informed decision as to how reliable
those data are. In the UVOTSSC pipeline this information is encapsulated in the form of quality
flags which are propagated from the first processing engine tothe final catalogue, on a source by
source, filter by filter basis. These quality flags are stored as an eight-bit integer number, with
each bit corresponding to one of the quality flags. Any bits which are set (i.e. non-zero) indicate a
potential quality issue. Table 1 lists the quality flags, thevalues of the bits that they represent and
a brief description of each flag.

Some of the quality flags are generic, while some are particular to the UVOT and its sister
instrument, the XMM-OM, and will be described briefly here. The CCD that forms the last stage
of the UVOT MIC detector is a frame-transfer device, and photons which arrive while the frame
is being transferred to the frame store will be displaced in the vertical direction [10]. Bright stars
thus give rise to vertical streaks of displaced photons which can be seen in UVOT images. These
streaks are referred to as read-out streaks. Occasionally,UVOTDETECT detects spurious sources
associated with the read-out streaks, and very faint sources close to the read-out streaks may have
their photometry affected by the presence of the streaks.

The UVOT is a photon counting instrument, and is linear in theasymptotic limit of faint
sources. However, when the count rate from an object is an appreciable fraction of the frame rate

6
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Figure 4: An image containing an example of a read-out streak, coincidence-loss induced distortion, a
smoke ring and a halo ring, around a bright source which showsdiffraction spikes. The different features
are labelled.

(90.6 frames s−1 in normal, full-frame operation), more than one photon may arrive within the same
frame, and will only be counted as a single photon, resultingin a non-linearity of the detector. This
is called coincidence loss [11] and is analogous to pile-up in X-ray CCDs. A correction for coin-
cidence loss is applied in the calculation of the photometry, but for sources with large coincidence
loss the image becomes distorted with a modulo-8 pattern relating to the event-centroiding that can
not be corrected. In particular, sources develop a dark ringaround a bright core. Morphological
information is compromised for such sources.

Smoke rings and halo rings are associated with bright sources, and are produced by internal
reflections within the detector window. Smoke rings are compact (30 arcsec diameter), out-of-focus
images of the source displaced radially from the in-focus image, while the optical path responsible
for the halo rings produces much larger (4.5 arcminute diameter) features. Smoke rings may give
rise to spurious sources and may contaminate the photometryof nearby sources. Halo rings, with
their larger scales, produce an enhanced and sometimes spatially variable background, and so will
affect the photometry of faint sources. Fig. 4 shows examples of a read-out streak, coincidence-
loss induced distortion, a halo ring and a smoke ring around abright source with diffraction spikes
visible.
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6. Properties of the catalogue

Table 2: UVOTSSC overall statistics

Period of observations 2005–2010
Total observations 23 059
Total sources 6 200 016
Repeated observations 2 027 265
Total entries 13 860 569

Some simple statistics about the catalogue as a whole are summarised in Table 2. Statistics
on the UVOTSSC, broken down by filter, are provided in Table 3,and the distribution of source
magnitudes in the six filters is shown in Fig. 5. The bright endlimit of the catalogue corresponds to
the limit at which coincidence loss can no longer be corrected [10]. The catalogue typically reaches
fainter magnitudes in the UV filters than the optical filters,and the majority of the UV sources are
fainter than theGALEXAll-Sky Imaging Survey limit [12]. A significant minority ofUVOTSSC
sources are fainter than theGALEXconfusion limit [13]. The UVOTSSC is a factor 2 larger than
the second release of the XMM-SUSS [9], reaches about 1.4 magnitudes deeper than the second
release of the XMM-SUSS in the UVM2 filter, and 2 magnitudes deeper in UVW2.

6.1 Astrometry

UVOT astrometry is tied to the USNO-B1 catalogue during the data processing. The absolute
astrometric accuracy of UVOT-derived positions is better than 0.5 arcsec [6], but for the faintest
sources the statistical uncertainty on position is comparable to the systematic uncertainty, and for
large extended sources the uncertainties can be larger. Within the catalogue, 98 per cent of the
sources have statistical uncertainties on their position of less than 0.5 arcsec.

6.2 Photometry

The photometric calibration of UVOT is described in [5], with updates in [6] and [14]. Within
the catalogue, the photometric accuracy has a strong dependence on source magnitude, but also de-

Table 3: UVOTSSC statistics by filter

V B U UVW1 UVM2 UVW2

Total detections 5 087 552 3 329 392 4 931 791 3 832 449 1 799 025 3110 521
Mean AB magnitude 17.81 18.37 19.65 20.62 21.16 21.38
Mean magnitude error 0.08 0.09 0.09 0.10 0.13 0.11
Brightest AB magnitude 11.40 12.83 13.18 12.80 12.06 12.63
Faintest AB magnitude 23.82 24.18 25.09 25.86 25.70 26.00
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Figure 5: Distributions of source magnitudes in the six imaging filters used for the UVOTSSC. The GALEX
All-sky Imaging Survey (AIS) depth, and the GALEX near-UV confusion limit are indicated.

pends on exposure time (which has a wide range) and background. The distribution of photometric
uncertainty is shown against magnitude for the six photometric bands in Fig. 6.

7. Accessing the catalogue

The UVOTSSC can be downloaded from the MSSLSwiftUVOT web pages2. It has also been
delivered to the Mikulski Archive for Space Telescopes (MAST)3 where it will be available soon.
In due course, the UVOTSSC will also be available through theVirtual Observatory.

8. Conclusions

We have constructed a catalogue of objects detected inSwift UVOT images. The catalogue
was constructed via a purpose-built processing pipeline based around the standard UVOTFTOOLS.
The UVOTSSC contains 6 200 016 unique sources detected with the Swift UVOT within the first
5 years ofSwift operations. For each source, astrometry, morphology and photometry in up to

2http://www.ucl.ac.uk/mssl/astro/space_missions/swift/uvotssc
3http://archive.stsci.edu
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Figure 6: Magnitude errors against AB magnitude for the 6 photometricbands used in the catalogue.

six UV and optical bands is provided, together with information about the quality of the data.
Now that the machinery is in place to process the catalogue, we intend to add the second five
years of UVOT observations for the next release. The catalogue offers a large statistical sample to
explore the properties of Galactic and extragalactic UV source populations, and a convenient means
for astronomers to obtain UVOT-derived information about sources of interest without having to
reduce UVOT data.
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